Friday, December 07, 2007
Complexity and incremental AGI design
Why is it so hard to build Artificial General Intelligence (AGI)?
It seems we have almost everything we need: great hardware, mature software development industry, Internet, Google, lots of successful narrow AI project ... but AGI is still to hard to crack.
The major reason is -- overall complexity of building AGI.
Richard Loosemore is writing about it:
Richard also explains, how exactly complexity affects system development:
The is a good technique of dealing with complex system -- increase complexity gradually and carefully test every step.
That's why I think it's so important to build testable narrow AI systems prior to building AGI.
We have many Narrow Artificial Intelligent Systems already, but we need more. And we need them to become more advanced up to the point when they become AGI.
It seems we have almost everything we need: great hardware, mature software development industry, Internet, Google, lots of successful narrow AI project ... but AGI is still to hard to crack.
The major reason is -- overall complexity of building AGI.
Richard Loosemore is writing about it:
Do we suspect that complexity is involved in intelligence? I could present lots of reasoning here, but instead I will resort to quoting Ben Goertzel: "There is no doubt that complexity, in the sense typically used in dynamical-systems-theory, presents a major issue for AGI systems"
Can I take it as understood that this is accepted, and move on?
So, yes, there is evidence that complexity is involved.
Richard also explains, how exactly complexity affects system development:
when you examine the way that complexity has an effect on systems, you find that it can have very quiet, subtle effects that do not jump right out at you and say "HERE I AM!", but they just lurk in the background and make it quietly impossible for you to get the system up above a certain level of functioning. To be more specific: when you really allow the symbol-building mechanisms, and the learning mechanisms, and the inference-control mechanisms to do their thing in a full scale system, the effects of tiny bits of complexity in the underlying design CAN have a huge impact. One particular design choice, for example, could mean the difference between a system that looks like it ought to work, but when you set it running autonomously it gradually drifts into imbecility without there being any clear reason.
The is a good technique of dealing with complex system -- increase complexity gradually and carefully test every step.
That's why I think it's so important to build testable narrow AI systems prior to building AGI.
We have many Narrow Artificial Intelligent Systems already, but we need more. And we need them to become more advanced up to the point when they become AGI.